Moc wycinarki laserowej – czy zawsze więcej znaczy lepiej?
Moc lasera jest tematem nie do końca zrozumiałym dla klientów chcących kupić wycinarkę laserową, ponieważ producenci w swoich kampaniach reklamowych prześcigają się w oferowaniu coraz większych mocy tych urządzeń. Natomiast okazuje się, że temat ten najpierw trzeba zrozumieć, zanim się podejmie odpowiednią decyzję, ponieważ odpowiedź na tytułowe pytanie brzmi – nie, nie zawsze więcej znaczy lepiej.
W ostatnich latach poziom mocy oferowanych w wycinarkach laserowych znacznie wzrósł. Przez 30 lat lasery (wtedy jeszcze CO2) były oferowane najpierw do 4, później do 6 kW i to był w zasadzie standard. Później pojawiły się lasery światłowodowe, na początku o małej mocy (1, 2, 3, 4, 6 kW), następnie wartości te zaczęły rosnąć od 10, 15, 20, aż do 30 kW. Dziś niektórzy producenci oferują moce na poziomie nawet 40 kW. Aby móc wyobrazić sobie skalę tej mocy, warto porównać maszynę do samochodu osobowego. Takie skojarzenie pozwoli nam również uzmysłowić sobie, dlaczego przesadzanie z mocą nie ma sensu.
Możliwości kontra rzeczywistość

1 kW. Laser o mocy 1 kW jest jak maluch, który posiadał dwadzieścia kilka koni mechanicznych, ale dało się nim jeździć. Może nie wjechał pod zbyt dużą górkę i może nie zrobił tego zbyt szybko, ale dojechał. Taką wycinarką również da się wycinać – może nie zbyt grubą blachę, może nie za szybko, ale idea jest użyteczna. Natomiast jest to tak mała wartość mocy, że w zasadzie nikt jej obecnie nie kupuje, ponieważ podwojenie tej mocy jest niewiele droższe.
2 kW. Przejdźmy do lasera 2 kW – można go porównać do współczesnego samochodu o najmniejszej dostępnej mocy, który można kupić i jeździć po zakupy. Taka moc dobrze sprawdzi się tam, gdzie większość ciętych blach nie przekracza grubości 3 mm, a wydajność nie jest czynnikiem kluczowym. Laser o mocy 2 kW przetnie bez problemu blachy czarne do 12 mm, a aluminium i stal nierdzewną do 6 mm. Jest to moc, która może się sprawdzić przy cięciu na własny użytek, jednak przy usługach wydajność byłaby niekonkurencyjna.
3 kW. Następna moc, 3 kW, to już jest moc, którą można porównać do samochodu mającego 100 KM, czyli podstawowy standard miejski. Przy cienkich blachach całkiem nieźle się sprawdza, a przyzwoitą wydajność uzyskujemy przy cięciu blach czarnych do 4 mm, które przy tej mocy można ciąć jeszcze w azocie. Grubsze blachy czarne – do 15 mm – tniemy już w tlenie, ale znacznie wolniej niż w azocie. Aluminium i stal nierdzewna będą cięte poprawnie do 8 mm. Uśredniona na wszystkie cięte blachy wydajność uwzględniająca ruchy przejazdowe i czynności przygotowawcze w stosunku do 2 kW rośnie o ok 30%.
4 kW. Taką moc możemy przyrównać do samochodu z mocą 150 KM, czyli standardu w samochodach klasy średniej. 4 kW wycina w azocie blachę czarną do 5 mm, a w tlenie do 18 mm. Aluminium i stal nierdzewna cięta jest do 10 mm. Wraz ze zwiększaniem mocy przy cięciu w azocie prędkość cięcia rośnie liniowo, ale przy 4 kW nie jest jeszcze na tyle duża, aby wyraźnie uwidaczniały się ograniczenia wynikające z dynamiki ruchów głowicy tnącej. Taka moc pozwala już na przyzwoite zarabianie na usługach, jednak należy traktować ją jako minimalną do tego celu. Wydajność w stosunku do 3 kW rośnie o ok. 18%.
6 kW. To moc odpowiadająca podstawowym mocom aut klasy premium ok. 250 KM. Jest to obecnie najczęściej wybierana moc, ponieważ do mocy 6 kW wydajność wycinarki szybko rośnie i nie jest jeszcze silnie ograniczana dynamiką ruchów przy cienkich blachach. W stosunku do 4 kW przy blachach 3-6 mm będziemy widzieli znaczną różnicę w wydajności, ale dla blachy 1 mm będzie ona już niewielka. Przy mocy 6 kW tniemy stal czarną do 6 mm w azocie i do 20 mm w tlenie. Aluminium i stal nierdzewna do 12 mm. Wydajność w stosunku do 4 kW rośnie o ok. 15%.
8 kW. To już jest jak samochód o mocy 400 KM. Kosztuje już sporo, ale w mieście niewiele to zmieni, gdy musimy kluczyć wąskimi uliczkami. Co prawda na autostradzie pojedziemy szybciej, ale i tak ograniczenia prędkości nie pozwolą nam na wykorzystanie takiej mocy. Oczywiście może trochę szybciej wystartujemy spod świateł, ale to niewiele zmieni w szybkości dotarcia do celu. Tu największa różnica będzie dla blachy czarnej o grubości 8 mm, ponieważ możemy ciąć tę blachę jeszcze w azocie, co pozwala ciąć nawet 4 razy szybciej niż w tlenie. Laser 8 kW tnie stal czarną w tlenie do 25 mm, a aluminium i stal nierdzewną do 15 mm (w azocie). Przy cienkich blachach do 1,5 mm szybkość liniowa cięcia jest już tak duża, że ograniczenia dynamiki powodują, że różnica w stosunku do mocy 6 kW jest niemal pomijalna. Wydajność w stosunku do 6 kW rośnie o ok. 10%.
10 kW. Kiedy kupimy laser o mocy 10 kW, to tak, jakbyśmy mieli auto 500 KM, to jest granica dostępności samochodów seryjnych. Teraz grubość blachy czarnej ciętej w azocie rośnie do 10 mm (grubość ta jest proporcjonalna do mocy), więc największą różnicę zobaczymy właśnie dla tej grubości. Grubsze blachy czarne dalej musimy ciąć w tlenie, a tu okazuje się, że zjawiska fizyczne występujące przy cięciu w tlenie nie pozwalają na zwiększenie prędkości przy mocach powyżej 8 kW, co więcej zwiększanie mocy nawet pogarsza jakość cięcia. Ale i granica widocznej przewagi tej mocy przesuwa się przy cienkich blachach do wartości ponad 3 mm. Czyli widoczna przewaga lasera 10 kW nad 8 kW dotyczy tylko blach 4-10 mm. Wydajność w stosunku do 8 kW rośnie o ok. 6%.
12 kW. To już musimy porównać do samochodów wyścigowych o mocach 700 KM. Największa różnica będzie dla blachy czarnej 12 mm. Przy cienkich blachach taka moc będzie nawet niemożliwa do wykorzystania, ponieważ zaczyna pojawiać się zjawisko zapalenia się plazmy, która źle wpływa na proces cięcia i nie można do tego dopuścić przez zmniejszanie mocy lub przez zmniejszanie prędkości posuwu. Takie niekorzystne zjawisko występuje przy większych mocach również w stali nierdzewnej, dlatego dalsze zwiększanie mocy nie powoduje proporcjonalnego zwiększania posuwu. Wydajność w stosunku do 10 kW rośnie o ok. 3%.
15 kW. To można porównać do samochodu o mocy 1000 KM. Takie samochody to już wyłączne samochody sportowe, których opanowanie wymaga ogromnego doświadczenia, a drobny błąd kierowcy powoduje często bardzo kosztowną kolizję. Podobnie jest z laserami, gdzie wraz ze wzrostem mocy urządzenie coraz rzadziej wybacza błędy operatora. Co prawda można takim laserem ciąć blachy czarne w azocie do 15 mm, ale zaczynają się pojawiać problemy z innym zjawiskiem – thermal lensingiem, czyli zmianą pozycji ogniskowej wraz z rozgrzewaniem się elementów optycznych.
To zjawisko powoduje często utratę stabilności cięcia, co skutkuje tym, że początkowo poprawne cięcie w ciągu kilku minut pogarsza się i czasami wymaga przerwy w cięciu w celu ostygnięcia optyki. Przy tak dużych mocach znacznie skraca się również żywotność elementów eksploatacyjnych, co powoduje radykalne zwiększenie kosztów cięcia. Z tego powodu użytkownicy, którzy kupili bardzo drogi laser dużej mocy, decydują się na cięcie wolniej z mniejszą mocą dla uniknięcia powyższych problemów. Wydajność w stosunku do 12 kW rośnie o ok. 2%.
20 kW i więcej. Tu można by było kontynuować wyliczankę i porównywać do samochodów o mocach 1500 czy 2000 KM. Czy nawet do rakiety kosmicznej. Jednak czy mglista perspektywa możliwości cięcia blachy 20 mm w azocie zrekompensuje ogromne koszty zakupu oraz eksploatacji takiego lasera? Co prawda producenci starają się omijać pojawiające się problemy np. przez zwiększenie długości ogniskowych do 300 mm, ale to powoduje zwiększenie średnicy plamki i zmniejszenie gęstości mocy, co skutkuje zmniejszeniem prędkości cięcia. Może się zatem okazać, że cięcie z mocą 20 kW lub więcej, uwzględniając przerwy na naprawy, przeglądy, wymiany spalonych soczewek czy światłowodów oraz zmarnowany materiał, kosztuje więcej niż cięcie przy mniejszych mocach.
Dobro klienta przede wszystkim
Zatem czy można sprzedać laser o mocy 15, 20, 30 kW? Można, nic prostszego, kupić źródło lasera o mocy 30 kW, włożyć do wycinarki laserowej, sprzedać klientowi, a potem? Chyba już tylko uciekać. Jednak powinno się wziąć odpowiedzialność za takiego klienta i wytłumaczyć mu wszystkie ograniczenia i zagrożenia płynące z posiadania takiej mocy. Również aspekty ekonomiczne powinny wziąć tu górę. Nawet pobieżna analiza powyższych faktów wskazuje, że często znacznie korzystniej jest kupić w tej samej cenie dwie wycinarki mniejszej mocy niż jedną większą. Dwie wycinarki zapewniają podwojenie wydajności dla całego asortymentu blach. Natomiast wydanie takich samych środków na jedną wycinarkę dużej mocy może w sumie podnieść tę wydajność tylko o np. 20%.
Źródło: Kimla
Galeria
Cyfrowa transformacja polskich firm przyspiesza
Polskie firmy coraz odważniej inwestują w technologie cyfrowe. Z danych zaprezentowanych w najnowszym raporcie „Barometr cyfrowej transformacji polskiego biznesu 2025-2026”, wynika, że cyfryzacja staje się jednym z kluczowych czynników konkurencyjności na rynku. W centrum zmia...
Zaawansowana robotyka i systemy oparte na sztucznej inteligencji w miejscu pracy
Nowe technologie w miejscu pracy tworzą zarówno wyzwania, jak i możliwości. Zaawansowana robotyka i systemy oparte na sztucznej inteligencji nie stanowią tu wyjątku. Analizując obecną literaturę dotyczącą możliwych skutków można dostrzec szereg powtarzających się czynników. Mo...
Analiza wpływu modyfikacji geometrii na pasowanie połączeń wielowypustowych wytwarzanych z zastosowaniem metody FFF
Dokładność geometryczna jest jednym z fundamentalnych kwalifikatorów poprawności procesów wytwarzania części maszyn i urządzeń. Jest ona wynikiem wielu składowych, stanowiących o całościowym efekcie procesu produkcyjnego. W celu zape...
Transport w fazie przetrwania. Firmy inwestują ostrożnie, ale szukają szans w nowych technologiach i współpracy
Polskie firmy transportowe stoją przed wyzwaniami i szansami na rynku, które zdecydują o ich kondycji w nadchodzących miesiącach. Badanie Bibby Financial Services z września 2025 r. ujawnia priorytety firm. Przedsiębiorstwa koncentrują się na pozyskiwaniu nowych klientów. Jedn...
ArcelorMittal Poland kontynuuje inwestycje w dąbrowskim oddziale. Projekty zmniejszające oddziaływanie na środowisko i zwiększające bezpieczeństwo są warte niemal 100 mln zł
W tym roku ArcelorMittal Poland w dąbrowskim oddziale realizuje wiele inwestycji. Modernizuje instalację odpylania wywrotnic wagonowych koksu. Remontuje instalację granulacji żużla w zakładzie wielkie piece. Modernizuje system odpylania stacji argonowania w stalowni. Na te trz...
Obróbka cieplna połączeń FSW umacnianych wydzieleniowo stopów aluminium
W pracy omówiono aktualne osiągnięcia w zakresie uzyskiwanych efektywności połączeń zgrzewanych tarciowo z przemieszaniem stopów aluminium serii 2XXX i 7XXX. Przytoczono przy tym wybrane wyniki badań własnych nad stopami AA2519-T62 i AA7075-T651, realizowanymi w Wojskowej Akad...
Kształtowanie laserowe wspomagane mechanicznie – alternatywa dla obróbki plastycznej?
Obróbka plastyczna stanowi podstawową metodę kształtowania metali, pozwalającą na uzyskanie skomplikowanych kształtów przy jednoczesnym poprawieniu właściwości mechanicznych materiału. Wysokie koszty i ograniczenia produkcji małoseryjnej skłaniają do poszukiwania alternatywnyc...
Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI
72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet strategii IT na najbliższe 18 miesięcy – wynika z badania Red Hat. Jednocześnie 21% deklaruje, że w perspektywie pięciu lat chce wykorzystywać AI do realnego tworzenia wartości dl...
Wybrane problemy stateczności w projektowaniu konstrukcji według Eurokodów
Zagadnienia stateczności konstrukcji budowlanych stanowią jeden z trudniejszych działów mechaniki budowli, z którym projektanci konstrukcji zmagają się na co dzień. Niezależnie od tego, czy projektujemy klasyczną drewnianą więźbę dachową, stalową belkę podsuwnicową, czy też sł...
Technologia cięcia laserowego – cz. I
W artykule opisano podstawy fizyczne i technologiczne procesu cięcia laserowego metali konstrukcyjnych oraz zalecane rodzaje laserów. Podano przykłady i zakres zastosowań przemysłowych cięcia laserowego materiałów konstrukcyjnych.
Wpływ lepkości składników kleju na wytrzymałość połączeń klejowych blach stalowych 1.0503. Testy chropowatości i topografii powierzchni
Artykuł analizuje, jak skład kompozycji klejowych i lepkość utwardzaczy wpływają na połączenia klejowe stali 1.0503. Analizowano również chropowatość powierzchni próbek poddanych obróbce mechanicznej, co pozwoliło ocenić adhezję kleju.
ME: Polski Rząd inwestuje w przyszłość polskiej energetyki. 4,6 mld zł trafi na budowę pierwszej polskiej elektrowni jądrowej
Polskie Elektrownie Jądrowe otrzymały obligacje skarbowe o wartości 4,6 mld zł, które umożliwią finansowanie kolejnego etapu budowy pierwszej polskiej elektrowni jądrowej. Środki pozwolą prowadzić dalsze prace projektowe i przygotowawcze oraz rozwój tzw. wewnętrznej infrastruk...
Jak chłodzić hale bez klimatyzacji i oszczędzać setki tysięcy złotych rocznie?
Rosnące koszty energii i konieczność redukcji śladu węglowego to dziś jedne z kluczowych wyzwań dla przemysłu. Firmy produkcyjne coraz częściej inwestują w rozwiązania, które nie tylko zwiększają efektywność operacyjną, ale też wpisują się w strategie ESG. Przykładem takiego p...
IGP-DURA®one 56 i IGP-Effectives®: synergia zapewniająca wysoką wydajność w technologii malowania proszkowego
W branży farb proszkowych do ochrony powierzchni kluczowe znaczenie mają wydajność, zrównoważony rozwój i jednolity odcień. Firma IGP Powder Coatings podjęła znaczący krok w tym kierunku, łącząc serię niskotemperaturowych farb proszkowych IGP-DURA®one56 z unikalną technologią ...
Rynek powierzchni przemysłowo-logistycznych – III kwartał 2025 r.
W trzecim kwartale 2025 roku polski rynek przemysłowo-logistyczny charakteryzował się wzrostem zapotrzebowania na powierzchnie w ujęciu rocznym oraz stabilizacją aktywności deweloperskiej. Całkowite zasoby nowoczesnej powierzchni przemysłowo-logistycznej osiągnęły poziom 36,45...
Kalendarium wydarzeń
Relacje
XXII Kongres PIKS
XXII Kongres Polskiej Izby Konstrukcji Stalowych odbył się 7 października 2025 roku w hotelu Holiday Inn w Józefowie. Tegoroczna edycja wydarzenia skupiła si...
Sprawdź więcejWarsaw Industry Week 2025 – najważniejsze trendy i kierunki rozwoju przemysłu.
Warsaw Industry Week 2025 – podsumowanie wydarzenia Tegoroczne Warsaw Industry Week 2025 (4–6 listopada, Ptak Warsaw Expo) wyraźnie pokazały, że część kon...
Sprawdź więcejPodsumowanie FASTENER POLAND 2025
FASTENER POLAND 2025 Połowa października w EXPO Kraków upłynęła pod znakiem międzynarodowego spotkania ekspertów rynku elementów złącznych z ich użytko...
Sprawdź więcejOpenHouse 2025: z wizytą u TRUMPF Polska
TRUMPF Polska z sukcesem zorganizował Dni Otwarte OpenHouse 2025, które odbyły się 11 i 12 września br. Wydarzenie OpenHouse 2025 przyciągnęło licznych klien...
Sprawdź więcej