Aktywne narzędzia skrawające sposobem na obróbkę w każdych warunkach
Obróbka skrawaniem jest jedną z podstawowych technik produkcji. Z jednej strony stawiane są jej coraz wyższe wymagania dotyczące jakości obrabianej powierzchni, dokładności, tolerancji wymiarów [2], a z drugiej – sytuacja rynkowa i warunki ekonomiczne wymuszają na wytwórcach ciągłe podnoszenie produktywności. Jakie narzędzia mogą pomóc w zwiększeniu efektywności produkcji?
Jedną z metod jest zwiększenie wydajności obróbki, co bezpośrednio wiąże się z większymi obciążeniami obrabiarek. W takiej sytuacji w trakcie obróbki oprócz ruchów zamierzonych występują również ruchy niezamierzone, często zakłócające prawidłowy przebieg procesu skrawania. Takimi ruchami są drgania [14]. Drganiami nazywamy proces, w czasie którego charakteryzująca go wielkość fizyczna zmienia swą wartość, rosnąc i malejąc na przemian [1].
Drgania a narzędzia do obróbki skrawaniem
Definiowane są również jako ruch wokół położenia równowagi [3]. Drgania, potocznie nazywane wibracjami, mają ogromne znaczenie w wielu dziedzinach nauki oraz są istotne dla wielu zagadnień technicznych. Ich rola jest szczególnie istotna w przypadku obróbki skrawaniem. Jej problem występowania drgań dotyczy bezpośrednio i w dużej mierze wpływa na efekt końcowy, jakim jest finalny produkt. Problem drgań w obróbce skrawaniem zainteresował badaczy już na początku XX wieku.
W przeciągu ostatniego stulecia prace prowadzone są m.in. nad narzędziami skrawającymi, które w dużej mierze determinują wspomniane wcześniej wymagania. Szczególną uwagę poświęca się również tzw. inteligentnym materiałom (ang. smart materials). Znajdują one zastosowanie w coraz szerszej gamie aplikacji związanych z obróbką skrawaniem.
Rodzaje drgań występujące w trakcie obróbki skrawaniem
Drgania są zależne nie tylko od samej obrabiarki i parametrów technologicznych procesu skrawania, lecz także od całego układu OUPN (obrabiarka – uchwyt – przedmiot – narzędzie), który de facto jest układem masowo-dyspersyjno-sprężystym. Dlatego też należy założyć, że w układzie OUPN źródłem drgań może być właściwie każdy element układu. Może być to sama obrabiarka lub jej elementy konstrukcyjne, uchwyt, przedmiot lub narzędzie [14]. W ogólnym zarysie drgania występujące w trakcie obróbki skrawaniem pod względem przyczyn można sklasyfikować jako: swobodne, samowzbudne oraz wymuszone.
Drgania samowzbudne
Drgania swobodne nie są szkodliwe. Są powodowane chwilowym naruszeniem stanu równowagi układu, np. poprzez zmianę warunków ruchu (hamowanie, rozruch, zmianę obciążenia, wejście w materiał, wyjście z materiału). Następnie są tłumione, a stopień rozproszenia energii jest zależny od właściwości masowo-dyspersyjno-sprężystych danej obrabiarki [3, 14]. Drgania samowzbudne są bardzo niepożądanym, groźnym i szkodliwym zjawiskiem z punktu widzenia obróbki skrawaniem. Są niebezpieczne, gdyż są drganiami niezanikającymi, a amplituda tych drgań samoistnie narasta. Skutkuje to znacznym pogorszeniem powierzchni obrabianej, zwiększeniem poziomu emitowanego hałasu, a w skrajnym przypadku może doprowadzić do zniszczenia narzędzia. Przykładowy skutek wystąpienia drgań samowzbudnych pokazany jest na rys. 1. Drgania samowzbudne nazywane są też drganiami typu chatter, które opisał jako jeden z pierwszych R.N. Arnold już w 1946 roku w [15].
Istnieje jeszcze wspomniany już wcześniej trzeci rodzaj drgań, mianowicie drgania wymuszone. Jak sama nazwa wskazuje, zachodzą wtedy, gdy na układ OUPN działa okresowo zmienna siła (wymuszenie). Powodem działania tak zmiennej okresowo siły może być np. nierównomiernie rozłożona masa obracającego się detalu w przypadku toczenia. Przyczyna powstawania drgań wymuszonych może bowiem leżeć nie w samej obrabiarce, lecz w jej otoczeniu na hali. Wówczas przenoszące się poprzez fundamenty wibracje spowodują powstawanie drgań wymuszonych
W jaki sposób sprostać wymaganiom?
Przyczyny powstawania drgań mogą być różne. Niemniej jednak najbardziej szkodliwymi drganiami są drgania samowzbudne typu chatter, które wprowadzają obróbkę w obszar obróbki niestabilnej. To z kolei może doprowadzić obrabiany detal do takiego stanu.
Częstym problemem, któremu należy stawić czoła, jest także obróbka długich smukłych wałów (w przypadku toczenia), czyli tzw. przedmiotów podatnych, lub obróbka narzędziem o smukłym kształcie i długim wysięgu. Jednym ze sposobów zapobiegania rozwojowi drgań samowzbudnych jest wybór odpowiedniego narzędzia. Jednym z rozwiązań zaproponowanych przez wiodącego producenta narzędzi skrawających jest narzędzie z wbudowanym tłumikiem drgań Sandvik z serii Silent Tool. Co prawda nie jest to stricte rozwiązanie wykorzystujące np. aktywne struktury lub tzw. inteligentne materiały, lecz w opinii autorów jest to konstrukcja na tyle skuteczna, ciekawa oraz popularna, że bez wyjątku zasługuje na kilka słów uwagi.
Budowa oprawki
W uproszczeniu budowę wewnętrzną oprawki narzędziowej można sprowadzić do bardzo precyzyjnie dobranej (do niepożądanych częstotliwości drgań) masy zawieszonej na dwóch gumowych pierścieniach. Wspomniana masa jest natomiast zanurzona w oleistej cieczy zwiększającej właściwości tłumiące [4]. Narzędzie to jest uniwersalne oraz ma wymienną końcówkę. Końcówka oprawki ma specjalnie zaprojektowaną ryflowaną pod kątem powierzchnię. Pozwala ona wymieniać narzędzia robocze w zależności od potrzeb wykonywanej operacji tokarskiej.
Narzędzia do obróbki skrawaniem: tłumienie
Kolejną cechą charakterystyczną dla danego narzędzia jest jego bardzo silne tłumienie (wynikające z opisanej powyżej budowy wewnętrznej), które zostało zweryfikowane przez autorów testem impulsowym z wykorzystaniem młotka modalnego.
Z informacji, jakie można uzyskać od producenta, wynika, że narzędzie z serii Silent Tool daje bardzo korzystne rezultaty. Jako przykład podano obróbkę zgrubną kołnierza przyłącza procesowego z zastosowaniem wytaczaka z modułem tłumiącym drgania. Wykorzystanie oprawy narzędziowej Silent Tool pozwoliło uzyskać dwukrotnie większe prędkości wrzeciona. Skróciło też czas jednostkowy o jedną trzecią oraz zwiększyło produktywność o 188%. Narzędzie może być stosowane również do zadań przy krótkich wysięgach w celu zwiększenia jakości wykończenia powierzchni oraz zwiększenia produktywności [4].
Ograniczenia
Rozwiązanie, które zostało zastosowane w oprawie narzędziowej Silent Tool, jest właściwie rozwiązaniem pasywnym, dlatego też ma pewne ograniczenia. Właściwości i masa modułu tłumiącego zostały tak dobrane, aby wytłumić określone postacie drgań. Parametry modułu tłumiącego są jednak niemodyfikowalne. Dlatego też np. dla postaci o innych częstotliwościach niż ta, do której zostało zaprojektowane narzędzie, efektywność pracy narzędzia może znacznie się zmniejszyć. Stąd lepszym rozwiązaniem jest aktywna kontrola drgań.
Układ sterowania
Kluczową rolę dla danego typu konstrukcji odgrywa właściwie dobrany układ sterowania. Jak wskazuje literatura, stosuje się podstawowe układy sterowania, takie jak np. regulator PID czy rozmyte regulatory PID [5, 6], wykorzystuje się również sztuczne sieci neuronowe, a także układy sterowania optymalnego, jak np. regulator LQG (ang. Linear – Quadratic – Gaussian), oparte na algorytmie liniowo-kwadratowym, którego celem jest minimalizacja błędu średnio kwadratowego, czy chociażby bardziej zaawansowany regulator adaptacyjny oparty na algorytmie LMS (ang. least mean squares) [8]. Istotny z punktu widzenia efektywności działania takich układów poza układem sterowania jest również element wykonawczy, czyli tzw. aktuator. Najchętniej stosowanymi aktuatorami są przetworniki piezoelektryczne, przede wszystkim ze względu na szereg zalet, jakie mają, tj.:
- małą wagę,
- małe wymiary,
- precyzyjne ruchy,
- pracę w szerokim paśmie częstotliwości [9].
Konstrukcje zza granicy
Jednym z twórców dość ciekawej konstrukcji aktywnego narzędzia skrawającego jest niemiecki instytut IFW (Institute of Production Engineering and Machine Tools) na uniwersytecie w Hanowerze. Przy współpracy z francuską firmą Cedrat Technologies opracował konstrukcję aktywnego adaptera dla noży tokarskich.
Konstruktorzy tego rozwiązania, na podstawie przeprowadzonego testu impulsowego, zidentyfikowali postacie drgań narzędzia. Przeprowadzili również próby skrawania (w tym przypadku przecinania), w których wprowadzili obróbkę w obszar niestabilny, tak aby pojawiły się drgania samowzbudne. Wykorzystując czujnik przyspieszeń, zbadano przemieszczenia narzędzia w trzech kierunkach. Przeprowadzone testy dostarczyły niezbędnych informacji do przygotowania modelu przedstawionego na rys. 3. Wymiary fizyczne adaptera to 125 mm długości oraz 62 mm średnicy zewnętrznej. W celu zwiększenia uniwersalności adapter został zaprojektowany zgodnie ze standardem
VDI-3425, dlatego też może zostać zamocowany w dowolnej tokarce CNC mającej głowicę rewolwerową.
System mocowania
System mocowania jest typowym standardem przemysłowym. Możliwa jest więc łatwa zmiana narzędzia w zależności od operacji, którą operator w danej chwili chce wykonywać. Narzędzie w celu efektywniejszego działania pracuje w zamkniętej pętli sprzężenia zwrotnego. Informację o przemieszczeniu lub – jak jest w tym przypadku – o wartości siły dla układu sterowania dostarcza jednokierunkowy piezoelektryczny czujnik siły. Sensor zamontowany jest pomiędzy złączem narzędzia a prowadnicą piezosiłownika. Prowadnica składa się z tulei, która jest połączona mechanicznie poprzez dwie membrany z obudową zewnętrzną.
Membrany pozwalają na niemal liniowe przemieszczenie narzędzia w kierunku promieniowym do pracy, który jest kierunkiem odporowym w procesie toczenia [10]. Niestety autorzy nie opublikowali wyników testów przedstawiających próby skrawania danym narzędziem z aktywnym układem sterowania oraz bez układu sterowania. To z pewnością pozwoliłoby zweryfikować pracę takiego narzędzia. Należy jednak pamiętać, że tego typu konstrukcje są rozwiązaniami prototypowymi realizowanymi przez jednostki naukowo-badawcze. Wyniki badań najczęściej nie są skomercjalizowane, głównie przez wysokie koszty danego rodzaju rozwiązań.
Zastosowanie ultradźwięków: narzędzia do obróbki skrawaniem
Kolejnym bardzo ciekawym rozwiązaniem wykorzystującym zupełnie inną technologię oraz zjawiska fizyczne, w porównaniu do wyżej opisanych rozwiązań, są narzędzia wykorzystujące ultradźwięki w celu wspomagania obróbki skrawaniem. Jest to technologia często wykorzystywana, zwłaszcza w takich operacjach jak wiercenie. Niemniej jednak znaleziono też zastosowanie w przypadku frezowania, toczenia, a nawet w trakcie obróbki elektrochemicznej (ECM) [12]. Obróbka wspomagana ultradźwiękami opiera się na wprowadzeniu dodatkowej energii do układu OUPN w formie oscylacji.
W rozwiązaniu tym wykorzystuje się relatywnie niskie amplitudy drgań, wynoszące około 10 µm, i wysokie częstotliwości drgań w zakresie około 20-60 kHz [17]. Celem wspomagania ultradźwiękami obróbki jest głównie poprawa łamania wióra oraz usuwanie go. To – jak zapewnia producent – zwiększa produktywność i dokładność obróbki. Głównym zastosowaniem ultradźwiękowego wspomagania obróbki jest wiercenie lub obróbka długich otworów ze względu na ciężkie warunki pracy narzędzia i utrudnioną drogę pozbywania się wióra. Podczas wiercenia głębokich otworów powstają długie wióry, z trudną łamliwością. Powoduje to zwiększenie obciążenia narzędzia (zwiększenie temperatury), powstają większe siły skrawania oraz istnieje ryzyko pogorszenia jakości powierzchni.
Narzędzia do obróbki a wpływ ultradźwięków
Narzędzie wyposażone w głowicę generującą ultradźwięki w czasie wiercenia umożliwia poprawę cykli technologicznych. Dzieje się tak nawet w trakcie trudnych warunków pracy przy minimalnym smarowaniu. Sprawia, że produkuje się krótkie wióry, które w rezultacie są łatwiej usuwalne. To z kolei powoduje zmniejszenie się siły skrawania oraz zmniejsza się zużycie narzędzia [12, 17]. Ultradźwięki znajdują również zastosowanie w czasie operacji frezarskich. Przy danym rodzaju obróbki ubytkowej skupiono się głównie na obróbce materiałów trudno skrawalnych, takich jak:
- materiały ceramiczne,
- spieki tytanu,
- wielowarstwowe kompozyty wzmacniane włóknami.
Do tego celu skonstruowano głowicę, którą można zastosować np. w 5-osiowych centrach obróbczych [12, 17].
Obróbka elektrochemiczna
Kolejnym, bardzo innowacyjnym i interesującym zastosowaniem jest wykorzystanie ultradźwiękowego wspomagania obróbki elektrochemicznej (ECM). Jak podkreślano w początkowej części artykułu, wyzwaniami w produkcji metalowych komponentów są:
- wysoka precyzja,
- różnorodność materiałów,
- dzisiejszy przemysł oraz coraz liczniejsza konkurencja wymagające ekonomiczności, produktywności i zarazem pomysłowości.
Obróbka elektrochemiczna wychodzi naprzeciw tym oczekiwaniom. Precyzyjna metoda elektrochemiczna jest hybrydowym połączeniem konwencjonalnego ECM z dodatkowymi wibracjami elektrody. Idea tej metody polega na zsynchronizowaniu mechanicznych oscylacji elektrody z elektrycznymi impulsami prądowymi. Pozwala to znacząco poprawić precyzję w porównaniu do metody konwencjonalnej. Dzięki temu możliwa jest do uzyskania powierzchnia o chropowatości Ra = 0,05 µm przy posuwie 1 mm/min [12].
Czytaj też >> Smarowanie MQL w obróbce skrawaniem aluminiowych materiałów kompozytowych
Podsumowanie
W przeciągu ostatnich lat rozwijające się technologie wymuszają na współczesnym przemyśle coraz większą precyzję, skracanie czasu produkcji czy wykorzystanie coraz to nowszych i trudniejszych w obróbce materiałów. Z kolei globalizacja, większa konkurencja oraz lepszy dostęp do technologii wymuszają większą ekonomię w produkcji oraz produktywność. Sprostać tym wymaganiom z pewnością niełatwo, lecz rozwiązania omawiane w niniejszym artykule wychodzą naprzeciw tym oczekiwaniom. Poprzez powstające drgania często niemożliwe jest wykorzystanie w pełni możliwości obrabiarki, jak np.: prędkości, posuwu czy głębokości skrawania.
Nowe możliwości
Dzięki narzędziom z tłumieniem drgań możliwe są zwiększenie parametrów skrawania, zapewnienie bezpiecznego przebiegu obróbki bez drgań i uzyskanie wąskich tolerancji, dobrej jakości wykończenia powierzchni oraz dużo większej wydajności skrawania, a w rezultacie niższego jednostkowego kosztu wykonania przedmiotu [19]. Wytwór IFW, jak podają autorzy [10], ma dalszy potencjał rozwojowy. Można go zoptymalizować w odniesieniu do technologii siłowników i kierunku wibracji oraz osiąganych amplitud wibracji. Można go też dostosować do określonego zadania obróbkowego. Według autorów niniejszej publikacji dużą niszą na rynku narzędzi skrawających stanowią aktywne narzędzia, wyposażone np. w piezosiłowniki. Według autorów jest to rozwiązanie dysponujące dużym potencjałem, dużą efektywnością w swoim działaniu. Jednak ze względu między innymi na wysokie koszty pozostające ciągle jeszcze w sferze uniwersyteckiej lub w obrębie instytucji naukowo-badawczych [20].
Mogą zainteresować Cię również
Programista robotów: Gdzie pracować? Video z ekspertem.
Zapraszamy do obejrzenia drugiej części nagrania z ekspertką – Dobromiłą Włodarską (robotycy.com) na temat pracy programisty robotów przemysłowych.
Transformacja polskiego przemysłu stalowego na europejskim rynku stali. Długofalowe zmiany rynkowe w ujęciu historycznym, cz. II
Z artykułu dowiesz się: czy jest szansa na obniżenie energochłonności w hutach w Polsce; czy przemysł hutniczy inwestuje w innowacyjne rozwiązania;
Targi FASTENER POLAND® – eksperci branży elementów złącznych z całego świata znowu spotkają się w Krakowie
Targi FASTENER POLAND®, które 25-26 września odbędą się w EXPO Kraków, to jedyne międzynarodowe targi elementów złącznych organizowane w Europie Środkowo-Wschodniej. Od siedmiu lat Targi FASTENER POLAND® są kluczowym forum wymiany do...
Twarde anodowe powłoki tlenkowe na aluminium i jego stopach
Anodowanie (eloksacja, od „elektrolityczna oksydacja”) – to powierzchniowa obróbka metali polegająca na elektrolitycznym wytworzeniu warstwy tlenku. Anodowanie stosuje się głównie w stosunku do aluminium i jego stopów. Można je także stosować do niektórych odmian stali, tytan...
2025: kolejny rok walki o przetrwanie dla sektora TSL?
Rok 2024 miał być początkiem oddechu dla branży transportowo-spedycyjnej. Jednak rzeczywistość brutalnie zweryfikowała optymistyczne prognozy. Firmy logistyczne, a także transportowe i spedycyjne zmagają się z kryzysem finansowym, a przewidywania na 2025 rok nie przynoszą rewo...
Jakość procesu cięcia laserowego blach stalowych – wpływ zawartości krzemu i innych pierwiastków stopowych
Przeprowadzono analizę czynników i parametrów decydujących o jakości procesu cięcia laserowego. Zestawiono blachy stalowe o gwarantowanej przez producentów jakości cięcia laserowego laser grade steels. Opisano wpływ zawartości krzemu i innych pierwiastków stopowy...
Ciągłe wyciskanie na kole (Conform®) – proces i możliwości wyciskania stopów magnezu serii AZ
Ciągłe wyciskanie na kole to proces poddawany wielu badaniom naukowym. Tym razem przyglądamy się badaniom prowadzonym przez Sieć Badawczą Łukasiewicz. Z artykułu dowiesz się:
Współczesne trendy rozwojowe w obróbce skrawaniem
Obróbka skrawaniem w technologii maszyn zajmuje miejsce w grupie obróbki kształtowej – ubytkowej. Jest wiodącą techniką wytwarzania i na razie nic nie wskazuje na to, aby miało się to zmienić. Zastosowanie obróbki skrawaniem jest bardzo szerokie...
Konferencja „IT w Produkcji”
5 grudnia online zapraszamy na organizowaną przez GigaCon konferencję „IT w Produkcji”.
Relacja ze szkolenia „Fotowoltaika na dachach płaskich”
12 września 2024 roku w Strykowie odbyło się szkolenie pt. „Fotowoltaika na dachach płaskich”, zorganizowane przez Stowarzyszenie DAFA. Było to pierwsze takie przedsięwzięcie w Polsce, poświęcone szczegółowym aspektom projektowania i realizacji instalacji fotowoltaicznych na d...
Cięcie plazmowe – analiza jakości powierzchni cięcia – cz. 1
W jakich okolicznościach cięcie plazmowe przynosi najwięcej korzyści? Sprawdzamy to w oparciu o badania naukowców z Górnośląskiego Instytutu Technologicznego oraz Politechniki Częstochowskiej. Z artykułu dowiesz się:
Mity w spawalnictwie: video z ekspertem. Część druga.
Serdecznie zapraszamy do obejrzenia drugiej części nagrania o mitach, które krążą w branży spawalniczej. O mitach spawalniczych opowiada ekspertka, Paulina Grabowska-Lisowska – Międzynarodowy Inżynier Spawalnik (IWE), inspektor, ...
Stale stosowane do budowy urządzeń i konstrukcji elektrowni jądrowych: rodzaje i wymagania jakościowe wg ASME i AFCEN
W obliczu planów budowy elektrowni atomowej w Polsce warto zapoznać się z wytycznymi dotyczącymi stosowanych przy tej budowie materiałów. Z artykułu dowiesz się:
Znamy laureatów nagrody Złoty Medal targów MODERNLOG 2024
Poznaliśmy produkty wyróżnione prestiżową nagrodą Złotego Medalu na targach Logistyki, Magazynowania i Transportu MODERNLOG 2024 oraz ITM INDUSTRY EUROPE 2024. Laureaci zawalczą teraz o Złoty Medal Wybór Konsumentów. W minionym tygod...
Konferencja PractiCORR 2025
Międzynarodowa konferencja PractiCORR 2025 to nowe wydarzenie, którego pomysłodawcą i organizatorem jest Polskie Stowarzyszenie Korozyjne. Konferencja PractiCORR 2025, której tematyka skupia się na praktycznych zagadnieniach ochro...
Przyszłość rynku stali: jak sektor hutniczy reaguje na globalne wyzwania?
Sytuacja w Ukrainie, napięcia międzynarodowe oraz zmiany w polityce handlowej kluczowych graczy, jak Unia Europejska czy Chiny, kształtują nową rzeczywistość dla branży hutniczo-wydobywczej. Jak wygląda obecnie rynek stali? W oblicz...
Kalendarium wydarzeń
Relacje
OpenHouse 2024: z wizytą u TRUMPF Polska
TRUMPF Polska z sukcesem zorganizowała Dni Otwarte OpenHouse 2024, które odbyły się 12 i 13 września br. Wydarzenie przyciągnęło ponad 200 gości reprezentują...
Sprawdź więcejPolitechnika Krakowska ma nowe laboratorium
25 kwietnia na Wydziale Mechanicznym Politechniki Krakowskiej odbyło się uroczyste otwarcie Laboratorium Ultraprecyzyjnych Pomiarów Współrzędnościowych. &...
Sprawdź więcejSeminarium Obróbki Laserowej 22 marca 2024
22 marca 2024, podczas targów STOM, odbyło się Seminarium Obróbki Laserowej, organizowane przez Politechnikę Świętokrzyską. Zapraszamy do zapoznania się z fo...
Sprawdź więcejKonferencja „Stal, Metale, Nowe Technologie”
20 marca, drugiego dnia targów STOM, odbyła się konferencja „Stal, Metale, Nowe Technologie”, której organizatorem była redakcja portalu dlaprodukcji.pl i dw...
Sprawdź więcej